See Part 1. I’ve been exploring a random walk in one dimension, where on object moves either +1 or −1 at each step, at random. On average, it will end up back near where it started (distance = 0), but over time, the likely positions start to spread out. I previously graphed the outcome of 1000 trials for 2000 steps. Although I can see the trajectories start to spread out, I’d like to actually graph the distribution.
Problem: Graph the probability of an object ending up at different distances from the origin during a random walk.