Launch to Orbit, Part 3

In Part 2, I found the velocity required for circular orbit was

$\displaystyle v = \sqrt{\frac{GM}{r}},$

where G is the gravitational constant, M is the mass of the body being orbited, and r is the distance to the center of that mass. I tested this on the ISS’s orbit and found the velocity matched quite well. Now, I’m interested in looking at orbital periods, and calculating aspects of some common orbits.

Problem: Calculate the velocity and periods for some typical circular orbits.

Launch to Orbit, Part 2

See Part 1, where I looked at how increasing horizontal launch velocities could lead to orbit. Now I want to explore this mathematically. In the Feynman Lectures on Physics, Vol. I, Ch. 7, Section 7–4 “Newton’s law of gravitation,” Feynman looks at the velocity required to achieve (circular) orbit. He looks at how far a projectile would fall in one second, and then looks at how fast it would have to be traveling horizontally to clear the surface and maintain the same altitude. I’d like to expand on his approach and see if I can find a general expression for the velocity.

Problem: Use the standard projectile motion equations to derive an expression for the velocity required to achieve circular orbit.